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A Chebyshev spectral collocation method for the temporal and spatial stability of swirling 
flows is presented. The linearized stability equations in cylindrical coordinates are solved using 
the method and eigenvalues obtained by employing the QZ routine. The developed algorithm 
is found to be robust and easily adaptable to various flow configurations, including internal 
and external flows, with only minor changes in the application of the boundary conditions. 
The accuracy and efficiency of the spectral method is tested for plane Poiseuille flow, annular 
flow, rotating pipe flow, and a trailing line vortex. 0 1989 Academic PEW, 1~. 

1. INTRODUCTION 

The applicability of Chebyshev spectral methods for solving hydrodynamic 
stability problems was first demonstrated by Orszag [l]. Subsequent applications 
of the technique to similar boundary value problems have further brought out 
the high degree of accuracy achievable using spectral methods, (Metcalfe and 
Orszag [2], Zebib [3], and Bridges and Morris [4]). However, of the three dis- 
tinct Chebyshev formulations (Galerkin, tau, and collocation), the cited stability 
calculations have employed only the Galerkin or the tau approach. 

Howard and Gupta [S] have shown that no general necessary and sufficient con- 
dition can be developed for delineating the stability of vortex flows subjected to 
asymmetric disturbances. Consequently, a separate stability analysis is required for 
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each type of vortex flow. This precludes then the Galerkin or the tau method as the 
most attractive approach to obtain the eigenvalues, since major modifications may 
be required when the mean velocity profile is changed or a new coordinate transfor- 
mation is involved. This is due to the fact that for both the tau and Galerkin 
methods the operators for the governing equations are always evaluated in the 
Chebyshev space, and thus must be modified for changes in the flow description. 

For the vortex stability problem, a spectral collocation method appears more 
attractive since a computational algorithm based on that method does not require 
major modifications from case to case and at the same time the computations are 
accurate and efficient. Therefore, a spectral collocation formulation of the linearized 
equations of motion for a steady, 3-dimensional, constant density fluid flow has 
been developed. The formulation is described in the subsequent sections. Although 
the spectral collocation technique has been applied to the Orr-Sommerfeld 
equation (Herbert [6], Spalart [7]), there appears to be no previous application of 
the method to the type of problems discussed in this paper. 

A Chebyshev collocation matrix algorithm has been constructed for both spatial 
and temporal stability calculations. In the present method, the derivatives of 
the eigenfunctions are evaluated in the physical space at the collocation points. 
Through numerous test cases which examined annular flow (including the narrow 
gap limit of plane Poiseuille flow), cylindrical Poiseuille flow, rotating pipe flow, 
and a trailing line vortex, we have shown that the developed algorithm produces 
accurate global eigenvalues for each case without requiring any substantial changes 
in the computer code. 

A future goal of this research will be to perform stability analyses of the similarity 
solutions for porous rotating pipe flow obtained by Donaldson and Sullivan [S]. 
Their computed profiles which are exact solutions to the 3-dimensional equations 
of motion have shown many of the flow features which are of interest in the study 
of unconfined trailing line vortices. For example, their solutions range from those 
which can be characterized as a single cell vortex to multiple cell vortices. In addi- 
tion, experimental measurements have documented the existance of many of these 
flows (see Adams and Gilmore [9], Leuchter and Solignac [lo], and Graham and 
Newman [ 11)). However, this study has been concerned primarily with validation 
of the spectral collocation method and to that end, the algorithm has been studied 
for some classical velocity profiles for which some stability results are available. 

2. PROBLEM FORMULATION 

We consider cylindrical-polar coordinates (r, 0, z) in which the governing 
equations of motion are written as: 

continuity 

f&‘)+;$+g=o (1) 
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(3) 

(4) 

where 

The flow variables are assumed to consist of a mean part and an infinitesimally 
small perturbation, i.e., 

u’= u+u 
v’= v+v 
w’= w+w (5) 

p’=l7+p. 

Following Donaldson and Sullivan [S], the basic flow is assumed to be of the 
form : 

U= U(r) 

V= V(r) 

W= zW(r), 

(6) 

where U, V, and W are the radial, tangential, and axial velocities, respectively. The 
z-dependence of the axial velocity, W, indicated above is treated using a quasi- 
parallel flow approximation. The approximation can be justified on dimensional 
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grounds using arguments similar to those employed by Donaldson and Sullivan in 
their similarity analysis. Assuming that the axial (z) coordinate has been made 
dimensionless by tube radius, R,, and using a Reynolds number, Re, based on tube 
radius, the axial velocity can be represented as 

(7) 

where q is a similarity variable for the radial coordinate and C is a nondimensional 
pressure gradient. 

The maximum value for f’(q) in (7) is unity. Consequently, if z is chosen as 

z. = Re/4C, 

then 

Wr, zo) =f’h). 

At zo, the axial gradient of W(r, z) is given by 

(8) 

(9) 

(10) 

which is very small since flows of interest have high Reynolds numbers. The quasi- 
parallel flow assumption is therefore justified. For cases where z is small or where 
pressure gradient rather than viscous forces are responsible for the z-dependence, 
one can use a multiple-scale analysis to account for nonparallel effects. The spectral 
collocation method developed in the present study can be used for such an analysis. 
However, we have assumed a “quasi-parallel” basic flow here and the disturbance 
quantities are assumed to have the form: 

{u, u, w, p} = {iF(r), G(r), H(r), P(r)} c?(~~+~~-~‘). (11) 

Here, F, G, H, and P are the disturbances eigenfunctions, a is the wavenumber in 
the axial direction, n is the wavenumber in the azimuthal direction, and o is the 
temporal frequency. For a single-valued solution, n must be an integer or zero. For 
n equal to zero, axisymmetric disturbances exist. When n is a positive or negative 
integer, asymmetric disturbances occur which represent different directions of 
propagation, depending on the sign of n/o. 

If spatial stability is considered, then w is real and a= u, + ia,. On the other hand 
for a temporal solution, c1 is real and o = o, + io,. In either case, the sign of the 
imaginary part indicates decay or growth of the disturbance. 

Substituting (5) and (11) into the governing equations (1 b(4) and neglecting the 
nonlinear terms, the linearized form of the equations is obtained. They can be 
written in nondimensional form : 
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continuity 

r-momentum 

&momentum 

-g+ u-1 G’+ -ia+ilf;-V+iaW+-+- [ Rerl [ ’ ‘: ;e(y+a2)] G 

z-momentum 

-g+ U-1 H’+ -iw+~+iaW+$+$ 
[ Rer] [ . 

H 

+i+yF+iaP=O. 

(14) 

Where Re is the Reynolds number based on pipe radius, Ro, and primes denote dif- 
ferentiation with respect to the radial coordinate. At the outer wall the no-slip con- 
dition is enforced for all velocities. Due to the singular nature of the coordinate 
system and because all physical quantities must be smooth and bounded on the 
centerline, some non-trivial requirements exist as r + 0. That is, on the centerline 

(16) 

where V is the total velocity vector. These limits (16) represent boundedness and 
smoothness conditions on the solutions along the centerline. The relations (16) are 
the formalized form of the compatibility relations given previously by Batchelor 
and Gill [12]. In expanding the conditions (16), we need to consider only the per- 
turbation part of the velocity since the mean flow is independent of the azimuthal 
direction. Representing the perturbation velocity field by v, we have 
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or 

But 

. av au 
!Z%ae ae 
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de,- 
de -efJ 

4 -= -e. 
d0 r’ 

substituting from (1 1 ), we deduce 

In order for the equality to hold, each component of the resultant vector must be 
zero. Similarly, application of the limit process to the perturbation pressure field 
yields 

Summarizing, in the limit along the centerline (r=O), we have 

nF+G=O 

F+nG=O 

nH=O 

nP=O. 

(16a) 

The above conditions depend on the value of the azimuthal wavenumber, n, such 
that if n = 0, 

F(0) = G(0) = 0 

H(0) and P(0) must be finite; 

if n= fl, 

F(0) + G(0) = 0 

H(0) = P(0) = 0; 

(17) 

(18) 
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or if InI > 1, 

f’(0) = G(0) = 0 

H(O) = P(0) = 0. 
(19) 

In the case when InI = 1, two of the conditions become linearly dependent. Another 
relation was deduced by enforcing the continuity equation on the centerline. Since 
H(0) = 0, 

lim 
r-0 

P’+i(F+nC)faH =2F’(O)+nG’(O)=O. 1 (20) 

2.1. Spectral Collocation Technique 

A Chebyshev collocation approach was chosen for this study. The use of colloca- 
tion simplifies the treatment of various boundary conditions and coordinate trans- 
formations considerably. The implementation of the resulting algorithm is also 
straightforward. Furthermore, Chebyshev polynomials distribute the error evenly, 
exhibit rapid convergence rates with increasing numbers of terms, and cluster the 
collocation points near the boundaries [ 13-151. 

Chebyshev polynomials are defined on the interval ( - 1, 1) by 

T,(~)=cos[kcos-’ r-J. (21) 

Because the physical range in this problem is (0, l), a simple transformation is 
made from the physical variable r to the Chebyshev variable 5 via 

5 = 1 - 2r, (22) 

where 

If. 

it can be seen that (21) becomes 

Tk( 5) = cos k& (23) 

The collocation points which are the extrema of the last retained Chebyshev 
polynomial in the truncated series are defined by 

tj=cos[J 
N’ 

j=O, l,..., N, (24) 
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where the centerline and outer wall boundaries, correspond to j equals 0 and N, 
respectively. 

An interpolant polynomial is constructed in terms of the values of the flow 
variable at the collocation points by employing a truncated Chebyshev series. Next, 
the first and second derivatives of the variable are determined explicitly using the 
above interpolant. As an example, we present expressions for F(t), since extension 
to the other variables is straightforward. If F(r) is represented by 

F(5) = 5 akTk(t)Y 
k=O 

then 

(25) 

(26) 

j=O, 1 , . . . . N, where A, and B,k are the elements of the derivative matrices and are 
given [15] as 

A, c&-lJkfi 
Ik c, <j--k 

(i#k) 

A =2N2+1 M) -= 
6 

-A 
NN 

with 

CO=CN=2, cj= 1, (l<j<N-1) 

and 

Bjk = Aj,,,A,k. 

(27) 

(28) 

Note that any higher derivative can be obtained by employing relation (28). 
Writing Eqs. (12)-(15) in terms of the Chebyshev variable and evaluating at the 

collocation points yields 

continuity 

(29) 
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(31) 

z-momentum 

-iReS,vy ,Fj+S, 2 BjkHk+ 
2 

-- Re Uj S, 5 Ajk Hk 
J k=O l -tj 1 k=O 

+ iRew-2(i~~~~)-Re$j-&]Hj 
[ J J 

-icr Re WjHj-ia Re Pj-u2Hj=0. (32) 

Here S1 and S2 are first and second derivative scaling factors developed from the 
coordinate transformation. The boundary conditions are, at l= -1, 

F(-l)=G(-l)=H(-l)=O 

and 

ap 
z +,=xv 

for all n. (33) 
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At l= 1, if n = 0, 

F(l)=G(l)=O 

H( 1) and P( 1) are finite ; 

ifn= +l, 

F(l)+G(l)=O 

N(l)=P(l)=O 

2F’(l)kG’(l)=O; 

or if InI > 1, 

F(l)=G(l)=O 

H(l)=P(l)=O. 

(34) 

(35) 

(36) 

The pressure boundary condition (33) and its effect on numerical calculations will 
be discussed later. 

2.2. Numerical Scheme 

Originally, the iterative method of Bridges and Morris [4] was selected to obtain 
the spatial solution. However, soon it was realized that the leading coefficient 
matrix (that is coefftcients containing an a* term) in this problem is non-manic and 
singular [4]. Bridges and Morris [4] have indicated that for this type of leading 
matrix, the convergence behavior of the iterative scheme is unknown at the present 
time. Therefore, a companion matrix method was selected to perform spatial 
calculations. This is a standard method in which the quadratic terms in a are 
linearized with a simple transformation. That is, for the spatial formulation, three 
new variables, F, G, E7 are defined: 

Fj = clFj 

Gj = aGj (37) 

I?!~ = ctHi. 

The extra boundary conditions on F, G, and R are identical to the conditions 
(33 )-( 36) without the pressure condition. 

The above governing equations can be represented in the generalized eigenvalue 
format as 

DX=AEX. (38) 

5Sl/Sl/l-IS 
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For the case of spatial stability, 

and 

For the temporal case, 

(39) 

X=[FGHPIT. (40) 

Both D and E are square matrices with dimensions of 7(N+ 1) or 4(N+ 1). 
Depending on the spatial or temporal stability, the last 14 or 8 rows of matrix D 
contain the boundary conditions. Since the boundary conditions do not contain the 
eigenvalue R, the submatrix in D containing these conditions was made upper tri- 
angular through column operations. If all of the diagonal elements of this submatrix 
are non-zero, it indicates that the boundary conditions are independent of each 
other and the ranks of matrices D and E are reduced to 7(N- 1) or 4(N- 1). 

It should be noted that the eigenvalue coefficient matrix, E, is singular. A proce- 
dure may be devised using row and column operations which reduces the rank of 
the coefficient matrix and removes the singularity (see, e.g., Metcalfe and 
Orszag [2]). Such a procedure was implemented in our work. An alternative 
approach is to introduce a term yoPj in the temporal formulation of the continuity 
equation (29). This additional term makes the coefficient matrix for o non-singular 
and may be termed an artificial compressibility factor (see Malik and Poll [ 163). It 
was found that computations using the method of artificial compressibility of Malik 
and Poll were at least one-and-a-half times faster than the matrix operations of 
Metcalf and Orszag [2], and both produced identical eigenvalues. For the spatial 
case, the term yclnj was added to Eq. (29), when the artificial compressibility 
method was used, to remove the singularity. The parameter y was assigned a very 
small value. This term generated large values for some of the eigenvalues of the 
matrix E-ID; however, experimentation with the value of y demonstrated that its 
effect on the desired (physical) eigenvalues was negligible. 

Before investigating a range of mean velocity profiles from [S], it was decided to 
test the versatility of the algorithm against model problems where solutions already 
exist. Each model solution will be discussed individually in some detail in the next 
section. All of the numerical solutions were obtained on the CDC CYBER 860 
machines at NASA Langley Research Center. Occasionally, when larger matrices 
were involved, solutions were obtained using a CDC VPS 32 machine. The 
generalized complex eigenvalue solver employed was the IMSL QZ routine called 
EIGZC. 
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3. TEST CASES 

The problems presented in this section were selected to represent the variety of 
flow domains and boundary conditions which could be studied with the spectral 
collocation code. The primary goal was to use these sample calculations to 
demonstrate the accuracy and efficiency of the present formulation, rather than to 
attempt to duplicate the earlier works of others. 

3.1. Spatial Stability of Flow through a Narrow Gap Annulus 

In the narrow gap limit, the spectrum of eigenvalues for axisymmetric disturban- 
ces approach those obtained for the Orr-Sommerfeld equation for plane Poiseuille 
flow. Here, the mean velocity profile for an annulus is of the form 

U=O 
v=o 

w= l-r2+&lnr2 
l-&+&In&’ 

(41) 

where non-dimensionalization is with respect to the maximum velocity and the half 
gap distance and rM is the location of maximum velocity. For this problem, we use 
the transformation 

2R, 
‘=’ -r+(Ro-Ri)’ 

where 
2Ri X3 

(R,-Ri)Sr’(R,-Ri). 

Ri and R, are the inner and outer radii, respectively. The no-slip boundary condi- 
tions are imposed at the two solid walls. That is, 

F(l)=G(l)=H(l)=O 

Ql)=G(l)=R(l)=O 

ap 
ar ,=,=x 

(43) 

and 
F(-l)=G(-l)=H(-I)=0 

F(-l)=G(-l)=R(-l)=O 

ap 
ar c=-I=x* 

(4) 
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The type of Neumann conditions specified for pressure is a well-known procedure 
whenever the NavierrStokes equations are being solved in the primitive variables. 
This issue has been discussed by Orszag and Israeli [17]. The value of 1 is 
prescribed by taking the inner product of the momentum equation with the 
boundary normal direction. In the cylindrical-polar coordinates this turns out to be 
the r-momentum equation in its original form evaluated at the boundaries. 

The two artificial pressure conditions in (43) and (44) may be altogether avoided 
by staggering the pressure terms and the continuity equation. This is accomplished 
by representing the pressure with a polynomial of N- 1 (rather than N) degree. At 
the same time a set of interpolating matrices must be developed to interpolate from 
the staggered points to the cell faces and vice versa. This procedure is quite 
involved and its programming is not as straightforward. We are currently working 
on this aspect of the problem; however, we will show in subsequent sections that 
pressure conditions (43) and (44) not only are viable but also produce accurate 
results with a substantial reduction in the complexity of the coding. 

Employing the tau formulation and even Chebyshev polynomials, Bridges and 
Morris [4] have reported on the critical wave number for the plane Paiseuille flow. 
Their results, along with the present calculations, are tabulated in Table I. To the 
degree of accuracy given by both methods, the critical wavenumbers are almost 
identical, agreeing in the sixth or seventh digits. Table II shows the eigenvalue spec- 
trum for plane Poiseuille flow obtained by Bridges and Morris [4] and those of the 
present calculations. Again, the eigenvalues match up to the fifth or sixth decimal 
place. For the case N+ 1 = 62, due to the large size of the matrices, round off error 
starts to show up in the unstable mode. However, this error is negligible and there 
has been no need to go to such high polynomial order. 

3.2. Temporal Stability of Narrow Gap Annulus 

An accurate set of eigenvalues for plane Poiseuille flow has been reported by 
Orszag [ 11, where the Chebyshev tau method has been used. He divided the eigen- 
values into sets of symmetric and antisymmetric modes where the former set was 
obtained using an even Chebyshev series while the latter set was found using an 
odd series. Ten of these modes were obtained by the present calculations and are 

TABLE I 

Comparison of the Result of Bridges and Morris with That Obtained by Chebyshev Collocation 

Bridges and Morris [4] Present method 

Nfl a N+l a 

32 1.020556 + 19.74( -07) 42 1.020557 + i8.13( -07) 

Note. Re = 5772, w = 0.26943. 
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TABLE II 

Comparison of the Eigenvalue Spectrum for Spatial Stability of Plane Poiseuille Flow 
due to Bridges and Morris with Those Obtained by Chebyshev Collocation 

Mode 

Bridges and Moris [S] Present Method 

N+1=42 N+l=62 

1 1.00047 - iO.00086 
2 0.28323 + iO.02538 
3 0.30165 + iO.04886 
4 0.31976 + iO.07532 
5 0.33745 + iO.10492 
6 0.35456 + i0.13782 
I 0.37090 + i0.17425 
8 0.38629 + iO.21480 
9 0.40156 + iO.26063 

10 0.42050 + iO.31175 

1.000473 - iO.000863 1.000468 - iO.000872 
0.283232 + iO.025381 0.283232 + iO.025381 
0.301647 + iO.048856 0.301647 + iO.048856 
0.319763 + iO.075318 0.319763 + iO.075318 
0.33744 + iO.1049 0.337449 + iO.104920 
0.35 + io.137 0.354564 + i0.137823 

0.370905 + i0.174246 
0.386286 + iO.214801 
0.401555 + iO.260635 
0.420492 + i0.311771 

Note. Re = 6000, w = 0.26. 

tabulated in Table III along with those of Orszag [ 11. The agreement between the 
two calculations is excellent for the first few modes but deteriorates for the rest of 
the eigenvalues. This lack of agreement is due to the fact that ordering of eigen- 
values for the present calculation was done for the sake of comparison. The actual 
computed eigenvalue spectrum contains many converged lower stable modes which 
are unique to the Poiseuille flow in an annulus and therefore are not reported here. 
As a next step, the gap width was reduced further while keeping N, the order of 
Chebyshev polynomials, fixed. The eigenvalues given in Table III were found to 
move and converge towards those reported by Orszag [ 11. 

TABLE III 

Least Stable Eigenvalues for a = 1, Re = 10000 

Mode Orszag [ 1 ] Present method 

1 0.23752649 + 0.003739671 
2 0.96463092 - 0.03516728i 
3 0.96464251-0.03518658i 
4 0.27720434 - 0.050898731 
5 0.93631654 - 0.063201501 
6 0.93635178 - 0.063251571’ 
I 0.90798305 - 0.091222741’ 

8 _, 0.90805633 -0.091312861 
9 0.87962729 - 0.119232851’ 

10 0.87975570 - 0.11937073i 

0.2375261+ 0.0037398i 
0.9646309 - 0.03156721’ 
0.9646425 - 0.03518651’ 
0.2772045 - 0.0508986i 
0.936316 -0.0632Oli 
0.936351 -0.0632511’ 
0.90798 - 0.09122i 
0.90805 -0.09131i 
0.8796 -0.1192i 
0.8797 -0.1193i 
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3.3. Spatial Stability of Poiseuille Flow in a Pipe 

The mean velocity for this problem is the well-known profile given by 

u=o 
v=o (45) 

w= 1 - r2, 

and the boundary conditions are 

at c= -1, for all n 

or 

F(-l)=~(-l)=H(-l)=O 

Wl)=G(-l)=R(-I)=0 

at<=1 

F(l)=G(l)=F(l)=G(l)=O 

ifn=O 
aH aR 

ar cc, I I =ar e=, 
=o 

ap 
dr [=I =x 

H(l)=R(l)=P(l)=O 

F(l)+nG(l)=O 

if n= fl F(l)+&(l)=0 

2F’(l)+nG’(l)=O 

2F’(l)+nG’(l)=O 

F(l)=F(l)=G(l)=G(i)=O 

if (nJ > 1 H(l)=R(l)=P(l)=O. 

(46) 

(47) 

(48) 

(49) 

The boundary conditions (46)-(49), minus the terms with bar superscript which are 
particular to the spatial formulation, are the conditions employed for the rest of the 
cases used in this study and therefore will not be repeated for each individual case. 
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TABLE IV 

Comparison of the Result of Garg and Rouleau with That Obtained by Chebyshev Collocation 

Garg and Rouleau [ 183 Present method 

n a a 

0 0.51998925173 + 0.02083549388i 0.51998925171+0.02083549388i 
1 0.5352510831 + 0.01722764391’ 0.53525108 + 0.01722763i 

Nore. Re = 10000, o = 0.5. 

The spatial stability of Poiseuille flow in a pipe has been reported by Garg and 
Rouleau [18]. Starting with a series solution near the centerline of the pipe, they 
integrated the governing equations employing a fourth-order Runge-Kutta scheme. 
For each particular set of parameters Re, CD, and n, a single eigenvalue was 
obtained through iteration until the boundary conditions at the outer wall were 
satisfied. Using a very small integration step size of 0.001, they obtained eigenvalues 
which were claimed to be accurate to at least nine significant digits. Two of their 
modes, along with the present results (using N = 40), are listed in Table IV. For the 
axisymmetric case (where n = 0) the agreement is excellent and the two values agree 
to 10 or 11 digits. However, the agreement is not as good for n = 1 as for n = 0; and 
as has been pointed out by [18], the loss of accuracy is caused by the twofold 
increase in the number of calculations for n = 1. As a test for the convergence and 
accuracy of the collocation method, the number of the collocation points, N was 
increased gradually and the convergence of the eigenvalues was observed. The result 
for n = 0 is tabulated in Table V and shows that for moderate values of N, six-digit 
accuracy is obtained. 

As a check on any effect of round off errors and on the value of the artificial com- 
pressibility parameter, the same set of eigenvalues was calculated with y = lo-” 

TABLE V 

The Convergence Property of the Chebyshev Collocation Method 

N a, 

20 0.519991235 0.020832533 
21 0.519988229 0.020836174 
22 0.519989641 0.020835397 
23 0.519989125 0.020835487 
30 0.519989251710 0.020835493892 
40 0.519989251713 0.020835493884 

Note. Re = 10000, o =0.5. ard n =O. N is the number of 
Chebyshev terms used to represent each of the flow variables. 
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TABLE VI 

The Effect of Artificial Compressibility Parameter on the Computation of the Eigenvalue a 

” y=lO ‘2 yz lo-‘8 

0 0.519991235 + 0.020832533i 0.519991235 + 0.0208325333 
1 0.535248453 + 0.017227006i 0.535248453 +0.0172270061’ 

Note. Re = 10000, w = 0.5, and N = 20. 

and lo-l8 using N= 20. The results which are shown in Table VI indicate that for 
moderate size matrices the round off error is insignificant. 

3.4. Temporal Stability of Poiseuille Flow in a Pipe 

There are many experimental, theoretical, and numerical papers available which 
are concerned with this problem. Therefore, to address the physics of the problem 
and do a thorough analysis of it is beyond the intent of this paper. It is reiterated 
that our objective is to show the numerical efficiency and the suitability of the 
Chebyshev collocation technique for a variety of hydrodynamic stability problems. 

The linear stability of Poiseuille flow in circular pipes subjected to azimuthally 
varying disturbances has been attempted by Lessen et al. [ 19). Using a shooting 
method, they found no instability for n = 1 perturbations. Two of their modes are 
tabulated in Table VII, along with the present calculations. The two methods agree 
very well. Salwen and Grosch [ZO] extended the work of [ 193 to higher n by 
expanding the governing equations in a set of Bessel functions and modified Bessel 
functions. This type of expansion is highly problem dependent, requiring a new set 
of functions for each new case. Salwen and Grosch found that as n increases so does 
the stability of the flow. This finding was confirmed by Metcalfe and Orszag [2] 
who used a Chebyschev tau formulation to obtain the eigenvalues. The solutions 
obtained by collocation reconfirms this result as shown in Table VIII. To the 
accuracy given by [2], the two methods generate identical results. Next the varia- 
tion of the least stable mode with Reynolds number was obtained using N= 30. A 

TABLE VII 

Comparison of the Results of Lessen with Those of Chebyshev Collocation 

Lessen [ 191 Present method 

?I a Re c, C, C, c, 

1 1 200 0.645 -0.129 0.64526 -0.129205 
1 1 2200 - 0.067 0.39797 - 0.067709 
1 1 2200 0.89663 -0.048114 
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TABLE VIII 

Comparison of the Variation of the Imaginary Part of 
the Least Stable Mode as a Function of the Circumferential 

Wave Number, II, with a = 1, and Re = 1000. 

Metcalfe and Orszag [2] Present method 

n Ci c, 

5 -0.180604 -0.180604 
I - 0.207943 - 0.207943 
9 - 0.245645 - 0.245645 

21 -0.710998 -0.710998 
51 - 3.37925 - 3.37925 

101 - 12.0699 - 12.0699 

comparison of these results with those of Salwen et al. [21] is given in Table IX. 
Again the agreement is excellent. 

The value of x in the Neurmann pressure boundary conditions on the outer wall 
(cf. Eq. (46)) was varied in a series of numerical experiments to ascertain its 
influence. In a typical case (n = 1, Re = 9600, CI = l), we found that when x was set 
to zero no detectable loss in accuracy was observed in the calculated eigenvalues 
when compared to the results obtained using the normal momentum equation. This 
is not surprising since the pressure at the wall must balance the normal viscous 
forces and they are very small. 

The question of the error which may be introduced through the Neumann 
boundary condition for pressure can only be addressed by comparing our results 
with formulations which eliminate pressure altogether. We have done this as a 
further test for the example case. Using 37 collocation points, we calculated 

TABLE IX 

A Comparison of the Variations of the Least Stable Modes with the Reynolds Number 
with Those of Salwen, Cotton, and Grosch [21] 

Re Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

100 0.57256 0.14714 0.55198 0.37446 0.78735 0.47946 0.66248 0.74907 Collocation 

0.57256 0.14714 0.55198 0.37446 0.78735 0.47946 0.66247 0.74907 SCG 

loo0 0.84675 0.07086 0.46914 0.09114 0.748190.15122 0.92730 0.15270 0.30948 0.15972 Collocation 
0.84675 0.07086 0.469160.09117 - - 0.92730 0.15270 0.30947 0.15973 SCG 

9600‘ 0.95048 0.02317 0.27684 0.04759 0.97668 0.04946 0.91886 0.04994 0.88817 0.07730 Collocation 

0.95048 0.02317 0.276810.04760 0.97668 0.04946 SCG 

Note. a = 1, n = 1. All the imaginary parts have negative sign which has been omitted for clarity. 
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o= (0.959481397 -0.0231707951’) which agrees with the results of Leonard and 
Wray [22] to nine significant digits. Since Leonard and Wray used divergence-free 
expansion functions for their velocity field, pressure was eliminated from their 
governing equations and the question of pressure boundary condition does not 
arise. Consequently, the numerical tests have shown that the Neumann boundary 
condition for pressure, which was used in this study, produces accurate eigenvalue 
results. It is worth noting further that the comparisons in Sections 3.1 and 3.2 were 
made with Orr-Sommerlield based calculations which did not contain pressure. 

3.5. Temporal Stability of Poiseuille Flow in a Rotating Pipe 

The stability of rotating Poiseille flow has received considerable attention in 
recent years. This type of flow is the simplest approximation to the trailing line 
vortex and at the same time is an exact solution to the Navier-Stokes equations. 
The mean velocity profile is of the form 

u=o 
V=Br 

W= 1 - r2. 
(50) 

where Sz is the angular velocity of the pipe wall. The governing equations and the 
boundary conditions are identical to those specified in the earlier sections. 

Pedley [23] produced results which were considered controversial because they 
indicated that the flow became unstable to asymmetric disturbances at relatively 
low Reynolds numbers when the pipe was rotating rapidly. His conclusion was con- 
trary to the previous general belief that rotation has a stabilizing inlluence. Pedley’s 
findings have been confirmed by Metcalfe and Orszag [2] after extensive calcula- 

TABLE X 

The Effects of Rotation on the Stability of Pipe Flow 

Metcalfe and Orszag [Z] Present method 

a i-2=0 Q=O.l Q=O sz=O.l 
ci c, C, c, 

0.01 - 14.683 - 14.683 - 14.683 - 14.683 
0.1 - 1.4788 - 1.4807 - 1.4788 - 1.4807 
0.5 -0.34849 -0.35545 - 0.34849 -0.35545 
1.0 - 0.27345 -0.27408 -0.27345 - 0.27408 
3.0 -0.19235 -0.18433 -0.19235 -0.18433 
5.0 -0.17650 -0.17141 -0.17650 -0.17141 

10.0 -0.1894 -0.1874 -0.1894 -0.1874 

Note. Only the imaginary part is shown. Here, Re = 100, and n = 0. 
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TABLE XI 

Variation of the Imaginary Part of the Least Stable Mode with 
Rotation 

Metcalfe and Orszag [2] Present method 

0. - 1.57781649 - 1.577816485 
o.ooo1 - 1.57781648 - 1.577816488 
0.001 - 1.57781653 - 1.577816667 
0.01 - 1.5778346 - 1.57783467 
0.1 - 1.5796 - 1.5796 
1. - 1.795 - 1.795 

10. -2.29 - 2.29 
50. -2.72 - 2.72 

Note. Re = 10, a = 1, and n = 0. 

tions. Here, for the sake of comparison, some of their results are reproduced. The 
effect of rotation on the stability of pipe flow with respect to symmetric disturban- 
ces is tabulated in Tables X and XI, along with those reported by [2]. From the 
above tables, it is deduced that in the case of symmetric perturbations, rotation is 
a stabilizing force. However, the conclusion of Pedley [23] is reconfirmed in 
Table XII which clearly shows the destablizing effect of the mean swirl on the pipe 
flow for asymmetric modes. Note that for the cases of Re = 2000, a =O.l, and 
Re = 130, a = 0.02 the Chebyshev collocation results are in quantitative disagree- 
ment with those of [a]. We have tested the convergence of our results using higher 
values of N. Unless this disagreement is the result of a typographical error or lack 
of resolution in [2], in light of the excellent agreement obtained for the previous 
tables, it is difficult to explain the discrepancy. 

TABLE XII 

Determination of Some of the Unstable Modes 

Metcalfe and Orszag [2] Present method 

Re a c, ci 

200 0.001 -47.5 -47.5 (stable) 
200 0.05 2.81 2.81 (unstable) 

2000 0.1 -0.167 -0.07887 
130 0.02 1.9761 1.9021 
130 0.06 1.34 1.34 
85 0.05 0.1135 0.1135 

Note. Q=-lOandn=l. 
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3.6. Temporal Stability of a Trailing Line Vortex 

The mean velocity profile for a trailing line vortex far behind an aricraft has been 
obtained by Batchelor [24]. The approximate asymptotic form of the solution is 

U=O 

V=F [l -exp(-r*)] (51) 

W= exp( -r*), 

where q is called the swirl parameter representing the ratio of the maximum swirl 
velocity to that of maximum axial velocity. Employing the above profile, Lessen 
and Paillet [25] have calculated the stability characteristics. Starting the solution at 
r = 0 with a Frobenius series and at r = rmax with an asymptotic solution, they have 
integrated from both limits using a Taylor series expansion and matching the 
solutions at some intermediate radius. Lessen and Paillet [25] found that the flow 
stability is very much dependent on the value of q and for values slightly greater 
than 1.5, all unstable modes are highly damped and stabilized. 

Since r varies between zero and infinity, an algebraic transformation given by 
Malik et al. [26] is employed in the form 

I+5 
r=ab_5’ (52) 

where a and b are constants. For any arbitrary value of a, b is uniquely determined 
by 

h=l++ 
max 

(53) 

It should be noted here that parameter a is very significant in that the above trans- 
formation concentrates at least half of the collocation points between r = 0 and 
r = a. Now, a closer look at (51) would reveal that for r > 3 the axial velocity is 
essentially zero and the azimuthal velocity approaches q/r, which is a potential 
vortex. Therefore, the value of a was set to 3 (incidentially, this value corresponds 
to the rmax of Lessen and Paillet [25], where they have started their asymptotic 
solution) and rmax = 100. A test was performed to make sure that the far field condi- 
tions where perturbations are set to zero applies at this finite value of rmax. That 
is, the value of rmax was set equal to 500 and then 1000 while keeping N constant 
and the movement of the eigenvalues was observed. Next, fixing rmax at 1000, the 
number of collocation points was increased gradually until five or six digit con- 
vergence was obtained. The above test revealed that for a very moderate number 
of collocation points, the rmax = 100 was sufficient and the desired eigenvalues had 
already converged to four or live significant digits. 
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- Results of Lesson and Paillet [25] 

-- Present Study. First Mode 

Present Study, Second Mode 

-0.3 8 
0.0 0.2 0.L 0.6 0.8 1.0 1.2 l.L 1.6 1.8 2.0 2.2 

FIG. 1. Variation of growth rate UC,, with swirl parameter q, for temporal stability of a trailing line 
vortex (Re = 141.4, G( = 1.34, n= -2). 

Figure 1 demonstrates the variation of clC, as a function of q along with the curve 
computed by Lessen and Paillet [25]. Although both methods show similar trends, 
the Chebyshev collocation results indicate the presence of a second instability mode 
which was not given by [25]. Also the entire growth rate curve computed by the 
collocation for the mode given by [25] is shifted to the left with higher maximum 
growth rate and a narrower region (smaller range of q) of instability. The above dif- 
ferences created the suspicion that transformation (52) may not have been suitable 
for the present problem and could have introduced errors in imposition of the far 
field boundary conditions. Therefore, a new coordinate stretching which has been 
given by Streett and Hussaini [27] was employed. That transformation is 

Cl +bexp(-41 bax 1-t 
r=[1+bexp(-a((l-l)/2))] ( > 2 ’ (54) 

where a and b are constants and are assigned values in the range of 2 to 3 and 5 
to 50, respectively. This mapping clusters the cell points near the two boundaries 
and has somewhat different characteristics than (52). A test was conducted using 
this transformation with rmax fixed at 1000. The value of N was increased gradually 
until the eigenvalues were converged to six or seven significant digits. It was found 
that both transformations (52) and (54) gave identical results. Because of the dif- 
ferent nature of these two mappings, the above findings support the correctness of 
concentrating more computational points near the centerline boundary and highly 
stretching the points in the outer part of the flow. With regard to the discrepancies 
between this work and [25], the possibility exists that their starting asymptotic 
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solution at rmax = 3 is not fully valid and raises the question of whether their 
integration should have started at a larger value of rmax. 

Before concluding this last section, we should mention that it is possible to 
reduce the governing equations (l)-(4) to a system which consists of a fourth-order 
equation plus a second-order equation. In the temporal formulation case, the new 
system would require one-fourth as much computer storage, but for the spatial for- 
mulation (which is the desired and intended form of calculation), the memory 
savings is not very substantial. In fact, the present seven equations model would 
only be reduced to a six equations model with the added complexity of dealing with 
higher order operators (more matrix multiplications to generate higher order 
operations) and more complex equations. 

4. CONCLUSIONS 

A Chebyshev spectral collocation method for studying the temporal and spatial 
stability of incompressible swirling flows has been developed. The primitive variable 
formulation of the governing equations has been used in the present study. This is 
in contrast with the standard approach of reducing the governing equations to a set 
of a fourth-order equation and a second-order equation. While the present formula- 
tion requires somewhat higher computer storage for eigenvalue calculation using 
the QZ algorithm, it is easily adaptable to various Row situations and is also 
suitable for compressible flows. The method has been applied to various temporal 
and spatial stability problems including flow through a pipe and an annulus, 
rotating pipe flow, and a trailing line vortex. While our results are in general 
agreement with the results of Bridges and Morris [4], Orszag [ 11, Garg and 
Rouleau [18], Lessen, Sadler and Liu [19], Melcalfe and Orszag [2], Salwen, 
Cotton, and Grosch [21], some quantitative disagreement with the results of 
Lessen and Paillet [25] for a trailing line vortex was found. 
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